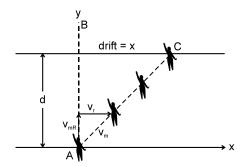
RELATIVE MOTION

 \vec{v}_{AB} (velocity of A with respect to B) = $\vec{v}_A - \vec{v}_B$


 \vec{a}_{AB} (acceleration of A with respect to B) = $\vec{a}_A - \vec{a}_B$

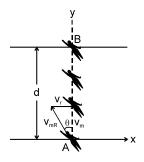
Relative motion along straight line - $\vec{x}_{BA} = \vec{x}_{B} - \vec{x}_{A}$

CROSSING RIVER

A boat or man in a river always moves in the direction of resultant velocity of velocity of boat (or man) and velocity of river flow.

1. Shortest Time:

Velocity along the river, $v_x = v_R$. Velocity perpendicular to the river, $v_f = v_{mR}$


The net speed is given by $v_m = \sqrt{v_{mR}^2 + v_R^2}$

2. Shortest Path:

velocity along the river, $v_x = 0$

and velocity perpendicular to river $v_y = \sqrt{v_{mR}^2 - v_R^2}$

The net speed is given by $v_m = \sqrt{v_{mR}^2 - v_R^2}$

at an angle of 90° with the river direction. velocity v_{ν} is used only to cross the river,

therefore time to cross the river, $t = \frac{d}{v_y} = \frac{d}{\sqrt{v_{mR}^2 - v_R^2}}$

and velocity v_v is zero, therefore, in this case the drift should be zero.

$$\Rightarrow$$
 $v_R - v_{mR} \sin \theta = 0$ or $v_R = v_{mR} \sin \theta$

or
$$\theta = \sin^{-1}\left(\frac{v_R}{v_{mR}}\right)$$

RAIN PROBLEMS

$$\vec{v}_{Rm}$$
 = \vec{v}_{R} - \vec{v}_{m} or v_{Rm} = $\sqrt{v_{R}^2 + v_{m}^2}$

